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Abstract. The coherent medium approximation of Odagaki and Lax is generalised to the 
trapping model. The frequency-dependent diffusion constant in the d-dimensional hyper- 
cubic lattice is studied when the jump rate obeys a bimodal distribution. The coherent 
medium approximation gives the correct static diffusion constant. The imaginary part of 
the AC part of the diffusion constant vanishes linearly in frequency w when d > 2, as w In w 
when d = 2 and as U‘”* when d < 2 .  The corresponding real part vanishes quadratically 
in frequency when d > 4, as u2 In w when d = 4 and as w d ”  when d < 4. The termite limit 
is studied by taking the limit that one of the two jump rates (probability p )  becomes infinite. 
In the termite diffusion the static diffusion constant is critical at p = 1 and the critical 
exponents are the same as those for the termite diffusion in the hopping model. The ant 
(or  ant lion) limit is defined by the limit of one jump rate being zero. The imaginary and 
real parts of the AC diffusion constant vanish linearly and quadratically in frequency, 
respectively. The critical exponent of the leading real part of the diffusion constant is one 
less than the corresponding exponent for the ant diffusion in the hopping model below 
the percolation threshold, while the leading imaginary part has the same critical exponent 
as those in the hopping model. 

1. Introduction 

Stochastic transport in disordered media has been attracting wide interest (e.g. Haus 
and Kehr 1987a). Carriers in the stochastic transport regime are assumed to obey a 
random walk equation in a random environment. Two models for the jump rates 
between two localised sites in a random walk equation have been studied extensively: 
one is the hopping model where the jump rate w, ,s from site s to site s’ satisfies the 
symmetry? w ~ . ~  = w,.,, and the other is the trapping model where the jump rate w, ., is 
determined by the property of site s and does not depend on the property of site s’ 
provided the jump from s to s‘ is possible. The trapping model can be considered as 
a hopping model with correlated asymmetric jump rates. 

Continuous models have also been utilised in the analysis of stochastic transport. 
de Gennes (1980) studied a diffusion process in a random mixture of ‘normal metals’ 
and ‘superconductors’, which he called a termite problem. His result does not show 
percolation phenomena. de Gennes’ work has been followed by that of Coniglio and 
Stanley (1984), Adler er a1 (1985) and Bunde er a1 (1985). A close comparison between 
these models in one dimension has also been carried out (Leyvraz et a1 1986). Odagaki 
(1986) analysed the dynamic diffusion of a termite problem using the hopping random 

More precisely, the detailed balance must be obeyed. 
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walk model. His result shows a percolation phenomenon in agreement with previous 
studies except for de Gennes' treatment. 

In this paper, I study a diffusion process in the trapping random walk model where 
the jump rate obeys a bimodal distribution, using a generalised coherent medium 
approximation (Odagaki and  Lax 1981). The limit that one type o f jump  rate is infinity 
is considered to be the termite diffusion in the trapping model. The static diffusion 
constant is critical at the limiting value of the probability ( p  = 1). This coincides with 
the result suggested by d e  Gennes (1980). The AC parts of the diffusion constant are 
shown to be critical at the same place as is the DC part. I also analyse the AC diffusion 
constant for the percolation limit in which one type of jump rate vanishes, i.e. a perfect 
trap. In a sense, this process can be viewed as ant diffusion with 'ant lions' whose 
larvae make a trap in the ground to catch ants. 

In 92 I develop a generalised coherent medium approximation suitable for the 
trapping model. This approximation turns out to be identical to the one proposed 
recently by Haus and Kehr (1987b). The system with a bimodal distribution is analysed 
in 93. The termite limit and the ant lion limit are studied in $ 9  4 and 5, respectively, 
and P 6 contains discussion. 

2. Coherent medium approximation 

I consider the trapping model in the d-dimensional hypercubic lattice where a carrier 
can jump only between nearest neighbours. The probability P ( s ,  tis,,, 0) that a carrier 
which started from site so at time t = O  is at site s at time t is assumed to obey the 
time development determined by 

The summation is taken over the nearest neighbours of site s and  the jump rate w, 
leaving from site s is a random quantity. The Laplace transform of P ( s ,  tis,, 0) 

then obeys 

where 6,,, is the Kronecker 6 function and z is the coordination number of the lattice. 
It is convenient to introduce a 'random walk Hamiltonian' 

with an orthonormal basis set {Is)}. The solution to (3) is formally given by 

P(s, ulso) = ( s l ( u  - H)-'lso). (5) 

Following the philosophy of the coherent medium approximation (Odagaki and 
Lax 1981), I introduce an approximate system HA 
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where Hc is a coherent medium with a u-dependent coherent jump rate wc. everywhere 

and 

Namely, in H A  all the jump rates except for those leaving site so are the coherent one 
which is to be determined self-consistently by requiring 

( ( U  - HA)-’) = ( U  - Hc)-’ (9) 

where the angular bracket ( ) denotes the ensemble average over the distribution of 
the jump rate wo= wyo.  Since the ‘scattering potential’ V contains only z + 1 bases (so 
and its z neighbours), it is easy to show that the condition (9)  is reducible to a 
( z i  1) x ( z  + 1) matrix equation 

(+(i - & + ) - I )  = 0 
I 

w h e r e i i s t h e ( z + l ) x ( z + l ) u n i t m a t r i x ,  V o o = z ( w c - ~ o ) l . V , o =  w 0 - w c ( j = 1 ;  * * , z )  
and the rest of the elements of ? are zero, and (p,)(., = P,] = ( s , l (u  - Hc)-’ls,). Using 
the identity 

one can easily show that the ( z + l ) ’  conditions in equation (10) reduce to a single 
equation 

WO - wc ) = O .  (12) ( w,+(wo- w,)(l - U P o o )  

This is the same equation derived by Haus and Kehr (1987). The diagonal element 
Po, is related to the Hilbert transformation of the density of states n ( x )  by 

FOo = F (  1 + u / z w c ) / i w c -  (13) 

and 

Here, n ( x )  is the density of states for the regular lattice 

n ( x ) = l  Ir [ J 0 ( y ) I d  e“’ dy. 
2 7  

J o ( y )  being the zeroth-order Bessel function of the first kind. 
In the coherent medium approximation the diffusion constant is simply given by 

D ( W )  = a’w,(iw) (16) 

where a is the lattice constant. 
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3. Bimodal distribution 

First, I consider the bimodal distribution for w, 

P ( w , ) = p 6 ( w , - w , ) + q 6 ( w , - w q )  

where p + q = 1 ,0  S p G 1. For this distribution of wo, (12) becomes 

I am primarily interested in the frequency-dependent diffusion constant near the 
static limit. It is known that F (  1 + E )  shows the following properties when E = 0 
(Odagaki et a1 1983) 

(i) d < 2  r ( d p ) r ( i  - d/2)h( i )Ed/2- i  + . . .  
(ii) d = 2  -h ( l )  In E + .  

(iii) 2 < d < 4  m, - r( d/2  - 1)r (2  - d/2)h(  1)Ed”-’ +. . . (19) 

(iv) d = 4  

( V I  4 < d  m i  - m2E + . . . 
m ,  + h(  1 ) ~  In E + . . . 

where T(x) is the gamma function, 

and 

It is straightforward to show that the static diffusion constant is given by 

for any dimensions. This result agrees with the exact result (Haus et a1 1982). Figure 
1 shows the p dependence of the static diffusion constant for various values of wp and 
wq. The AC part of the diffusion constant can also be determined by a careful analysis 
of (18). Table 1 summarises the results where the AC part near the static limit is written 
as 

(23) [ W O )  - D(O)l/a’= A ( P ) f ( @ ) i +  Wp)g(w) .  

Note that when w,, = wq then A ( p )  and B ( p )  vanish as expected. 

4. The termite limit 

The termite limit is defined as the limit of w,, = cc with wq = 1 (constant). The static 
diffusion constant in this limit is given by 

D(O)/a‘w, = (1  - p ) - ‘  (24) 
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Figure 1. The static diffusion constant D(0) la '  plotted against p for the system with the 
bimodal distribution for the jump rate in the trapping model for various values o f  wp and 
w , ~ .  ( A )  wp =e, wq = 1 corresponding to the termite limit; ( B )  w,, = 5 ,  wcl = 1; ( C )  w,, = 1, 

= 0.5; ( D )  wp = 1, w,, = 0 corresponding to the ant lion limit. 

in agreement with the exact result (Haus et a1 1982). This relation is also shown in 
figure 1. I define critical exponents s, U and d by (p,  = 1) (Straley 1976): 

D(0)  - (Pc- P)- \  when p + p, -0' 

D(0)  - wp( wq/wpILT-[ (y)( :)"I when wp + w, p + p c - O +  

One can easily find s = 1, U = 0, 4 = 1 and T-(x) = l / x  which satisfy the scaling relation 
s 4  + U = 1, the same relation proposed by Bunde et al  (1985) for their termite model. 

The AC part of the generalised diffusion constant in the termite limit can also be 
obtained from table 1. The frequency dependence of the imaginary and real parts 
remain the same as given in table 1. The coefficients A,( p )  and B,(p)  of the leading 
imaginary and real parts near the static limit of D ( w )  show critical behaviour. I define 
critical exponents p , (d)  and v,(d)  by 

AI (  p )  - ( pc - p ) - " ~ ' ~  ' (26) 

B , ( P ) - ( p c - p ) - + '  (27) 

w i t h p , = l .  I found p , ( d ) = l  for d 2 2  and p , ( d ) = 2 - d / 2  for d s 2 ,  and v,(d)=O 
for d 2 4 and v,( d ) = 2 - d / 2  for d S 4. These exponents are the same as those for the 
termite diffusion in the hopping model (Odagaki 1986). 
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5. The ant lion limit 

I define the ant lion limit by wq = 0 setting w,, = 1. Obviously D ( 0 )  = 0 except when 
p = 1. If one defines a critical exponent t by D ( 0 )  - wp(  p - p c ) ' (  p 3 p c )  as usually done 
in the problem of random register networks, this result implies t = 0 and p c =  1. 
Furthermore, one can write D(0)  at p = p c  as D(0)  - wp( wq/  w,,)" with U = 0 and D ( 0 )  
in the limit of wq + 0 and p + p c  - 0' as 

with U = 0 and C$ = 1 (Straley 1976). Thus, the critical exponents t, U and 4 satisfy a 
scaling relation tC$ = U. Note that this and the relation in the previous section imply 
U = t / (s  + t )  and C$ = I/(s + t )  (Bunde et a1 1985). 

The AC part of the diffusion constant behaves as 

D(w) /a ' -A, (p) iw+B,(p)w~ (28) 

where A, ( p )  is the solution of the equation 

and B , ( p )  is given by 

with F'(  5) 
and B,( p )  show critical behaviours 

d F (  [)/d[. When the probability p is close to unity the coefficients A, ( p )  

except when d = 2 for A,(p) and d = 4 for B,(p)  where a logarithmic behaviour 
appears. I found p a ( d ) = 2 / d  for d < 2 ,  A, (p) - (p , -p) - ' ln (p , -p)  for d = 2  and 
p , ( d ) = I  for d > 2 .  Similarly, v , ( d ) = 4 / d  for d < 2 ,  B , ( p ) - ( p c - p ) - ' [ l n ( p c - p ) ] 2  
and v,( d )  = 2 for d > 2. These critical exponents can be compared to those for the 
hopping conduction in the d-dimensional lattice bond percolation process below p c  
(Odagaki et a1 1983). The exponents p a ( d )  are the same as those for the percolation 
model and v,(d) is one less than the corresponding critical exponent. This is due to 
the fact that p c  = 1. 

6. Discussion 

In this paper I have studied the trapping model using the generalised coherent medium 
approximation which turns out to be identical to the approximation proposed recently 
by Haus and Kehr (1987b). As an example, the bimodal distribution, in particular the 
termite limit and the ant lion limit, was investigated. The static diffusion constant in 
the present approximation agrees with the exact result, suggesting excellence of the 
present approximation. The static diffusion constant in the termite limit is critical at 
p = 1 and not at the percolation point. This result coincides with the suggestion made 
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by de Gennes (1980) for the so-called ‘Paris termite’. This is conceivable since in the 
termite limit a carrier jumps out immediately from ‘superconducting’ regions and  
performs a random walk in ‘normal’ regions, which was in fact the assumption used 
by de  Gennes. Thus the static diffusion constant is always finite if any ‘normal’ region 
exists. This is very similar to the fact that D(0)  = 0 in the ant lion limit except for 
p = 1 (this is also the case even when the other jump rate becomes infinity as in the 
termite model). No matter how small the fraction of the traps is, any trap, if it exists, 
absorbs carriers eventually and no further diffusion is possible. 

The low-frequency behaviours obtained here for the termite model are the same 
as those obtained for the termite limit in the hopping model including the logarithmic 
frequency dependence at d = 2 and d =4 .  The coefficients A , ( p )  and B , ( p )  show 
critical behavior at p = 1 and  the associated critical exponents are the same as those 
for the hopping model. 

The ant lion limit in the trapping model was also studied. This diffusion process 
can be compared to ants walking in a field with ant lions. Once an ant is trapped by 
an  ant lion, it can never come back to the field. Thus the static diffusion constant 
must vanish if any number of ant lions exist in the field. The behaviour of the AC 

parts of the diffusion constant is also very similar to those for the ant diffusion in the 
hopping model below the percolation threshold. The leading real and imaginary parts 
of D ( w )  near the static limit show critical behaviour at p = 1. The critical exponent 
for the real part is one less than the corresponding critical exponents in the hopping 
model. This is due to the fact that the threshold in the trapping model is p = 1. 

Finally, there has been a study of the so-called ‘Tel Aviv termite’ (Adler et ai 1985) 
in which the first step of the diffuser is treated differently from the subsequent walk. 
In the present treatment all steps are treated equivalently. Thus the present model 
cannot describe the Tel Aviv termite. 
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